

23-26 АПРЕЛЯ 2019 ГОДА

Россия, Чувашская Республика, г. Чебоксары, пр-т Тракторостроителей, д. 103 «А»

СБОРНИК ДОКЛАДОВ НАУЧНО-ТЕХНИЧЕСКОЙ КОНФЕРЕНЦИИ МОЛОДЫХ СПЕЦИАЛИСТОВ

Организаторы

Официальные медиа-партнеры

РЕЛАВЭКСПО-2019

Сборник докладов научно-технической конференции молодых специалистов

УДК 621.311-52+621.316.925](063) ББК 27-051я43 С23

Редакционная коллегия:

- Г.С. Нудельман, кандидат технических наук, гл. редактор;
- В.Г. Ковалев, кандидат технических наук, доцент;
- А.В. Жуков, кандидат технических наук;
- В.А. Шуин, доктор технических наук, профессор;
- А.А. Наволочный, кандидат технических наук, доцент;
- О.А. Онисова, кандидат технических наук

Сборник докладов научно-технической конференции **C23** молодых специалистов. – Чебоксары: Изд-во Чуваш. ун-та, 2019. – 310 с.

ISBN 978-5-7677-2895-4

Представлены статьи и доклады научно-технической конференции молодых специалистов, проведенной в рамках форума РЕЛАВ-ЭКСПО-2019, в которых приводятся и обсуждаются результаты актуальных научных исследований в области релейной защиты и автоматики, интеллектуальных энергосистем и повышения энергетической эффективности, моделирования электротехнических устройств.

Для преподавателей, аспирантов, магистрантов, студентов старших курсов энергетических специальностей вузов, инженернотехнического персонала предприятий и энергосистем.

УДК 621.311-52+621.316.925](063) ББК 27-051я43 © Издательство Чувашского университета, 2019

ДОСТОВЕРИЗАЦИЯ ПАРАМЕТРОВ РЕЖИМА В СИСТЕМАХ УПРАВЛЕНИЯ ЦИФРОВОЙ СЕТИ

Андреева Е.А., Солдатов А.В., Наумов В.А., Марков Н.Ю., ЧГУ им. И.Н. Ульянова, ООО НПП «ЭКРА», г. Чебоксары, Россия.

Аннотация. В докладе рассмотрены причины искажения измерительной информации, характеризующей режим работы цифровой электрической сети. Рассмотрены методы достоверизации измеренных значений параметров режима. Приведены результаты достоверизации параметров режима участка электрической сети различными методами.

Ключевые слова: цифровая сеть, достоверизация параметров режима, оценивание состояния.

Введение

Концепция цифровой сети, предлагаемая ПАО «Россети» [1], предполагает широкое использование средств автоматического управления технологическими процессами для достижения качественно нового уровня функционирования и развития электрической сети, повышения надежности электроснабжения потребителей и снижения уровня потерь при передаче электрической энергии. Управление сетью возможно при наличии достоверной и полной информации о ее текущем режиме. Анализ текущего режима электрической сети выполняется на основе оценок параметров режима (ПР), измеренных с помощью интеллектуальных электронных устройств (ИЭУ) и переданных в системы управления посредством устройств сбора и передачи данных.

Все оценки ПР в общем случае отличаются от их истинных значений, поскольку содержат ошибки измерения, вызванные конечной точностью ИЭУ. Помимо ошибок измерения в оценках ПР могут содержаться грубые ошибки, называемые выбросами. Выбросы могут появиться в результате сбоя в программном или аппаратном обеспечении ИЭУ или устройств сбора и передачи данных, либо вследствие успешных кибератак на инфраструктуру цифровой сети. Ошибки в данных могут привести к принятию неверных решений по управлению сетью и, как следствие, к значительному увеличению экономических затрат

субъектов электроэнергетики. Поэтому достоверизация ПР – наиважнейшая задача цифровой электрической сети, заключающаяся в получении расчетных (достоверизированных) значений ПР максимально приближенных к их истинным значениям. Степень близости расчетных значений ПР к истинным называется качеством достоверизации ПР и является мерой ее эффективности.

Наибольшее распространение нашли три метода достоверизации измеренных значений ПР: метод оценивания состояния (ОС) электроэнергетической системы, метод контрольных уравнений (КУ) и комбинированный метод.

Целью настоящей работы является исследование эффективности методов достоверизации ПР.

Метод оценивания состояния

Под ОС понимается определение сбалансированного режима электрической сети на основе оценок \hat{y}_m ПР (узловых напряжений, инжектируемых и отбираемых активных и реактивных мощностей в узлах и перетоков мощности в ветвях), $m=\overline{1,M}$ — номер оценки ПР, М — количество оценок ПР [2]. Для этого решая систему уравнений состояния электроэнергетической системы находятся такие расчетные значения \overline{y}_m ПР, при которых все невязки

$$\xi_{\mathbf{m}} = \hat{\mathbf{y}}_{\mathbf{m}} - \overline{\mathbf{y}}_{\mathbf{m}} \tag{1}$$

будут находиться в окрестности соответствующей области размером σ_m . Размер области σ_m численно равен максимально возможной погрешности оценки m-го ПР и определяется характеристиками ИЭУ, с помощью которого этот ПР был измерен.

Для поиска расчетных значений $\bar{y}_{_{m}}$ ПР невязки (1) минимизируют по критерию наименьших квадратов [3]

$$\min \sum_{m=1}^{M} \left(\frac{\xi_m}{\sigma_m} \right)^2. \tag{2}$$

Метод контрольных уравнений

Метод позволяет обнаружить и устранить грубые ошибки в измеренных значениях ПР [4]. Для этого на основе оценок ПР,

используя уравнения баланса мощности в узлах и ветвях электрической сети, составляют контрольные уравнения (КУ) для узлов

$$\underline{\varepsilon}_i = \underline{S}_i + \sum_{j=1}^N \underline{S}_{ij} , \qquad (3)$$

и ветвей

$$\underline{\varepsilon}_{ii} = \underline{S}_{ii} - \underline{S}_{ii} - \Delta \underline{S}_{ii} , \qquad (4)$$

определяемые топологией и параметрами сети, где ε_i — небаланс мощности в i-ом узле, i и j — номера узлов сети, N — количество узлов в сети, ε_{ij} — небаланс мощности в ветви между i-ым и j-ым узлами, \underline{S}_i — мощность i-го узла, \underline{S}_{ij} и \underline{S}_{ji} — перетоки мощности в ветви между узлами i и j, измеренные около i-го и j-го узла соответственно, $\Delta \underline{S}_{ij}$ — потери мощности в ветви между узлами i и j, рассчитанные по данным, измеренным около i-го узла.

Теоретически, небалансы мощности во всех узлах и ветвях должны быть равны нулю, но из-за наличия ошибок в оценках ПР величины (3) и (4) будут иметь ненулевые значения. Если измеренные значения ПР будут содержать грубые ошибки, то условие небаланса

$$\varepsilon_{i(ii)} < \varepsilon_{i(ii),\partial on}$$
, (5)

не будет выполняться, где $\varepsilon_{i(ij),\delta on}$ — допустимый небаланс мощности в i-ом узле (в ветви между узлами i и j), определяемый по предельным погрешностям, указанным в паспортных данных ИЭУ, с помощью которых выполнялись измерения ПР для соответствующего небаланса мощности $\varepsilon_{i(ij)}$.

Анализируя уравнения, в которых не выполняется условие (5), выявляются оценки ПР с грубыми ошибками. Эти ПР пересчитываются, используя КУ, на основе измеренных значений ПР, не содержащих грубых ошибок.

Комбинированный метод

Комбинированный метод достоверизации ПР объединяет в себе действия двух предыдущих методов:

1) На первом этапе формируются КУ, на основе которых выполняется поиск и коррекция оценок ПР, содержащих грубые ошибки.

2) На втором этапе происходит расчет ПР по методу ОС с учетом скорректированных данных, полученных после первого этапа.

Сравнение методов

Эффективность методов достоверизации проверена на тестовом участке сети, представленном на рис. 1. Истинные значения ПР сведены в табл. 1. На рис. 2, 3 представлены относительные отклонения измеренных $\Delta_m = y_m - \hat{y}_m$ и расчетных $\Delta_m = y_m - \overline{y}_m$ ПР, полученных различными методами достоверизации.

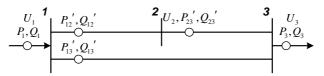


Рис. 1. Тестовый участок сети

Таблица 1 Истинные значения измерений

m	1	2	3	4	5	6	7
Тип ПР	$U_{\scriptscriptstyle 1}$	${U}_2$	U_3	P_{12}	Q_{12}	P_{13}	Q_{13}
Значение, о.е.	1,045	1,036	1,011	0,225	0,102	0,789	0,356

Продолжение табл. 1

m	8	9	10	11	12	13
Тип ПР	P_{23}	Q_{23}	P_1	$Q_{\scriptscriptstyle 1}$	P_3	Q_3
Значение, о.е.	0,224	0,098	1,014	0,458	-1	-0,4

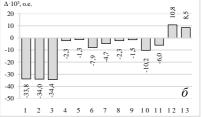


Рис. 2. Относительные отклонения ПР по методу ОС: a – измеренных; δ – достоверизированных

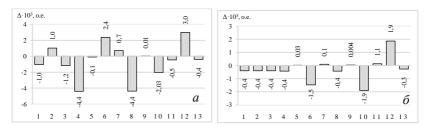


Рис. 3. Относительные отклонения: a –по методу КУ; δ –по комбинированному методу

Метод ОС показывает качественные результаты при наличии в оценках ПР незначительных ошибок в пределах погрешности ИЭУ. Грубые ошибки, содержащиеся в измеренных ПР не исключаются, а распределяются между расчетными ПР.

Метод КУ хорошо идентифицирует и исправляет грубые ошибки в измеренных ПР, но не способен исключить ошибки, вызванные неточностью средств измерений.

Таким образом, разумно применение комбинированного метода достоверизации ПР, который, как показали результаты исследований (рис. 2), дает наилучшие результаты.

СПИСОК ЛИТЕРАТУРЫ

- 1. Россети. Концепция «Цифровая трансформация 2030». М.: 2018. 31 с.
- 2. *Гамм А.*3. Статистические методы оценивания состояния электроэнергетических систем. М.: Наука, 1976. 220 с.
- 3. *Ali Abur, Antonio Gomez Exposito*. Power System State Estimation. Theory and Implementation. New York: Marcel Dekker, 2004.
- 4. *Гамм А.З., Колосок И.Н.* Обнаружение грубых ошибок телеизмерений в электроэнергетических системах. Новосибирск: Наука, 2000. 152 с.

Авторы:

Андреева Елена Андреевна, инженер департамента автоматизации энергосистем ООО НПП «ЭКРА», магистрант Чувашского государственного университета им. И.Н. Ульянова по направлению «Электроэнергетические системы, сети, электропередачи, их режимы, устойчивость и надежность». E-mail: andreeva_ea@ ekra.ru.

Солдатов Александр Вячеславович, заместитель директора департамента автоматизации энергосистем по научному сопровождению продукции ООО НПП «ЭКРА», старший преподаватель кафедры ЭИЭС имени А.А. Федорова Чувашского государственного университета им. И.Н. Ульянова. E-mail: soldatov_av@ekra.ru.

Наумов Владимир Александрович, заместитель генерального директора - технический директор ООО НПП «ЭКРА». В 2005 г. защитил во ВНИИЭ кандидатскую диссертацию «Анализ и совершенствование продольных дифференциальных защит генераторов и блоков генератор-трансформатор». E-mail: naumov_va@ekra.ru.

Марков Николай Юрьевич, специалист по разработке алгоритмов расчета режимов департамента автоматизации энергосистем ООО НПП «ЭКРА», ассистент кафедры ЭИЭС им. А.А. Федорова Чувашского государственного университета им. И.Н. Ульянова. Етаіl: markov_ny@ ekra.ru.

ЦИФРОВАЯ ПЛАТФОРМА ИНТЕЛЛЕКТУАЛЬНЫХ СЕРВИСОВ РЕГИОНАЛЬНОЙ СЕТЕВОЙ КОМПАНИИ

Мозохин А.Е., филиал ПАО «МРСК Центра» - «Костромаэнерго», Кострома, Россия.

Староверов Б.А., ФГБОУ ВО «Костромской государственный университет», Кострома, Россия.

Аннотация. За последние десять лет региональные сетевые компании сделали значительный рывок в направлении цифровизации и автоматизации технологического процесса транспорта электроэнергии. В связи с этим дорожная карта «Энергжинет» в краткосрочной перспективе (2016-2020 гг.) предусматривает разработку и реализацию мероприятий по повсеместному продвижению цифровой инфраструктуры и сервисов. Построение единой цифровой платформы интеллектуальных сервисов на уровне Холдинга не актуальна для первого этапа стратегии «Энерджинет», так как степень цифровизации разных регионов отличается. В связи с чем, разработка цифровой платформы интеллектуальных сервисов на уровне региональной сетевой компании является своевременной и перспективной задачей.

Ключевые слова: цифровая трансформация, интеллектуальная энергетика, энергоэффективность, цифровые платформы, интеллектуальные сервисы.

СОДЕРЖАНИЕ

ПРЕДИСЛОВИЕ	3
РЕЛЕЙНАЯ ЗАЩИТА И АВТОМАТИКА	
ЭЛЕКТРОЭНЕРГЕТИЧЕСКИХ СИСТЕМ	4
Исмуков Г.Н., Михайлов М.В., Подшивалин А.Н.	
(ООО «Релематика», ЧГУ им. И.Н. Ульянова)	
Задача волнового ОМП секционированных линий	
распределительных электрических сетей	4
Исмуков Г.Н., Подшивалин А.Н.	
(ООО «Релематика», ЧГУ им. И.Н. Ульянова)	
Испытания волновых устройств защиты	
и диагностики линий электропередачи	8
Исмуков Г.Н., Подшивалин А.Н., Терентьев Г.В.	
(ООО «Релематика», ЧГУ им. И.Н. Ульянова)	
Спектральные составляющие переходных процессов	
при коммутациях в электрической сети	14
Куликов А.Л., Лоскутов А.А., Пелевин П.С.	
(НГТУ им Р. Е. Алексеева)	
Методы цифровой фильтрации высокочастотных	
составляющих переходного процесса при ОМП ЛЭП	17
Иванов С.В., Лямец Ю.Я., Макашкин Ф.А.	
(ООО «Релематика», ЧГУ им. И.Н. Ульянова)	
Спектральный анализ электрической величины	
по малому числу отсчетов	23
Иванов С.В., Лямец Ю.Я., Макашкин Ф.А.	
(ООО «Релематика», ЧГУ им. И.Н. Ульянова)	
Итерационная адаптация многозвенного фильтра	
на малом числе отсчетов	31
Кудряшова М.Н., Наумов В.А., Солдатов А.В., Иванов Н.Г.	
(ООО НПП «ЭКРА», ЧГУ им. И.Н. Ульянова)	
Преобразования сигналов в алгоритмах выявления	
перемежающегося дугового замыкания в электрической сети	38
Степанова Д.А., Иванов Н.Г., Солдатов А.В.	
(ООО НПП «ЭКРА», ЧГУ им. И.Н. Ульянова)	
Оптимальные фильтры ортогональных составляющих	
для различных задач релейной защиты и автоматики	42

Александрова М.И., Наумов В.А., Антонов В.И. (ООО НПП «ЭКРА», ЧГУ им. И.Н. Ульянова)	
Структурный анализ тока для оценки успешности	
управляемой коммутации	50
Атнишкин А.Б., Павлова К.В., Петров С.Г.	
(ООО «Релематика», ЧГУ им. И.Н. Ульянова)	
Алгоритм коррекции нелинейно искаженного сигнала	
трансформатора тока	56
Белянин А.А., Смирнова И.В., Широкин М.Ю.	
(ООО «Релематика», ЧГУ им. И.Н. Ульянова)	
Применение координат Эдит Кларк в задачах релейной	
защиты	60
Лебедев А.А., Климова Т.Г.	
(НИУ Московский Энергетический институт)	
Анализ аварийных ситуаций в электроэнергетических	
системах по данным УСВИ	64
Елкин С.В., Колобродов Е.Н., Климова Т.Г.	
(НИУ Московский Энергетический институт)	
Применение векторных измерений для определения	
параметров АЛАР	68
Никитина А.Н., Петров В.С.	
(ООО НПП «ЭКРА», ЧГУ им. И.Н. Ульянова)	
Асинхронный режим электрической сети и способы	
его выявления	72
Алексеев В.С., Петров В.С.	
(ООО НПП «ЭКРА», ЧГУ им. И.Н. Ульянова)	
Выбор характеристики срабатывания АЛАР с учётом	
влияния погрешностей измерения входных величин	78
Наумов И.А., Онисова О.А.	
(ОАО «ВНИИР», ЧГУ им. И.Н. Ульянова)	
Исследование функционирования дистанционных	0.2
защит при отклонениях частоты	83
Данилов С.А., Волошин А.А., Благоразумов Д.О., Коваленко А.И.	
(НИУ Московский Энергетический институт)	
Релейная защита распределительной сети	0.0
при использовании обратной трансформации	88

Анисимова В.С., Наумов В.А., Иванов Н.Г., Солдатов А.В. (ООО НПП «ЭКРА», ЧГУ им. И.Н. Ульянова)	
(000 ппп «Экга», чту им. и.п. ульянова) Универсальный интерфейс "человек – машина"	
современного устройства релейной защиты	
и автоматики	4
Ильина Д.А., Семенов К.Г.	
(ООО «НПП «Динамика»)	
Особенности тестирования цифровой блокировки	
при неисправностях цепей напряжения14	7
Егоров В.С., Толстов Е.Г.	
(ООО «Релематика», ЧГУ им. И.Н. Ульянова)	
Система мониторинга РЗА: разработка и испытание алго-	_
ритмов)
Петров В.В.	
(ООО «Научно-исследовательский центр ЧЭАЗ»)	
Особенности реализации РЗА присоединений тяговых под-	,
станций	_
Ефремов А.В., Ефремов В.А.	
(ООО «Релематика», ЧГУ им. И.Н. Ульянова) Особенности реализации НВЧЗ для линий с пофазным управ-	
особенности реализации 11Б 43 оля линий с пофизным управ- лением выключателем	5
Засыпкин А.С. (мл.)	,
(Южно-Российский государственный политехнический универси-	
тет (НПИ) имени М.И. Платова)	
Релейная защита схем плавки гололёда на стальных	
грозозащитных тросах воздушной линии	
электропередачи159)
Бабичев А.С.	
(Южно-Российский государственный политехнический универси-	
тет (НПИ) имени М.И. Платова)	
Применение наложенного тока для селективного	
контроля изоляции группы электродвигателей162	2
Силанов Д.Н., Васильев Д.С.	
(ООО «НПП Бреслер»)	
Комплекс резервной централизованной цифровой защиты ПС 35/10(6) кВ160	<
эищиты 11C 35/10(0) КD 100	J

Толстов Д.А., Шапеев А.А.
(ОАО «ВНИИР»)
Вопросы кибербезопасности микропроцессорных терминалов релейной защиты.
микропроцессорных терминалов релеиной защиты. Предложения по обеспечению
безопасности базового ПО устройства171
Андреев Б.Л., Подшивалин А.Н. (ООО «Релематика», ЧГУ им. И.Н. Ульянова)
(000 «гелематика», чт у им. и.н. эльянова) Дублирующие измерения на цифровой подстанции
· · · · · · · · · · · · · · · · · · ·
Лачугин В.Ф., Волошин А.А., Волошин Е.А.,
Благоразумов Д.О., Добрынин В.И. (НИУ Московский Энергетический институт)
Применение методов синхронизации по параметрам аварий-
ного режима для реализации шины процесса
по стандарту МЭК 61850179
Низамова Р.Р., Исаков Р.Г.
(КНИТУ им. А.Н. Туполева)
Анализ работы дистанционной защиты линии
электропередач оснащенной устройством
продольной компенсации
Метелев И.С., Ярков И.Г., Исаков Р.Г. (КНИТУ-КАИ им. А.Н. Туполева)
Разработка цифровой модели cemu Microgrid
для исследования работы релейной защиты189
СОВРЕМЕННЫЕ МЕТОДЫ МОДЕЛИРОВАНИЯ ЭЛЕК-
ТРОТЕХНИЧЕСКИХ УСТРОЙСТВ
ИНТЕЛЛЕКТУАЛЬНЫЕ ЭНЕРГОСИСТЕМЫ
И ПОВЫШЕНИЕ ЭНЕРГЕТИЧЕСКОЙ
ЭФФЕКТИВНОСТИ
Евдаков А.Е., Яблоков А.А., Лебедев В.Д.
(Ивановский государственный энергетический университет)
Разработка имитационной модели электромагнитного
трансформатора тока с учетом эффектов насыщения и ос-
таточной намагниченности магнитопровода194
Виноградов С.Э.
(ООО «НПП «Динамика»)
Исследование переходных процессов в ёмкостном трансфор-
маторе напряжения

Иванов Н.Г., Наумов В.А., Антонов В.И. (ООО НПП «ЭКРА», ЧГУ им. И.Н. Ульянова)	
Анализ переходных процессов в компенсированной	
ЛЭП СВН в цикле интеллектуального АПВ	. 201
Литвинов С.Н., Лебедев В.Д., Кутумов Ю.Д.	
(Ивановский государственный энергетический университет)	
Разработка способа снижения вероятности пробоя	
полимерной изоляции и мониторинг ее состояния	
в цифровых измерительных трансформаторах	. 212
Васильева А.В.	
(ООО «НПП «Динамика»)	
Проверка высоковольтных выключателей с помощью	
прибора РЕТОМЕТР-МЗ	. 215
Федоров А.О., Солдатов А.В., Петров В.С.	
(ООО НПП «ЭКРА», ЧГУ им. И.Н. Ульянова)	
Методика выбора параметров выходного фильтра	
солнечной электростанции	. 218
Федотов А.Ю., Наумов В.А., Антонов В.И.	
(ООО НПП «ЭКРА», ЧГУ им. И.Н. Ульянова)	
Задачи и методы поддержания эффективности	
солнечных электрических станций	. 224
Гвоздев Д.Б., Архангельский О.Д.	
(НИУ Московский Энергетический институт)	
Подходы к проведению исследований безопасности	
электроэнергетических систем с применением	221
полунатурных моделей	. 231
Андреева Е.А., Солдатов А.В., Наумов В.А., Марков Н.Ю.	
(ООО НПП «ЭКРА», ЧГУ им. И.Н. Ульянова)	
Достоверизация параметров режима в системах	225
управления цифровой сети	. 235
Мозохин А.Е., Староверов Б.А.	
(филиал ПАО "МРСК Центра"-"Костромаэнерго", Костромской	
государственный университет)	
Цифровая платформа интеллектуальных сервисов региональной сетевой компании	240
	270
Кубарьков Ю.П., Титов П.А. (Самарский государственный технический университет)	
Оптимизация режимов работы электрических	
Оптимизация режимов раооты электрических систем с активно-адаптивными сетями	245

Болтунов А.П., Васильев С.П., Карпенко В.И.,	
Волошин А.А., Волошин Е.А.	
(НИУ Московский Энергетический институт)	
Интеллектуальная система прогнозирования	
нагрузки потребителей в микрогрид-системах	254
Васильев С.П., Болтунов А.П., Карпенко В.И.,	
Волошин А.А., Волошин Е.А.	
(НИУ Московский Энергетический институт)	
Разработка интеллектуальной системы	
агрегированного управления нагрузкой	
потребителей в микрогрид-системах	260
Волошин А.А., Благоразумов Д.О., Коваленко А.И., Дорофеев И.Н., Смирнов В.С.	
(НИУ Московский Энергетический институт), ООО «ПиЭлСи Технолоджи»)	
Применение интеллектуальных систем управления	
для повышения надежности распределительных сетей	267
Бурмейстер М.В., Точилкин В.Г.	
(НИУ Московский Энергетический институт)	
Проблемы недоучёта электрической энергии в сетях комму-	
нального электроснабжения	274
Волошин А.А., Волошин Е.А., Карпенко В.И.,	
Васильев С.П., Болтунов А.П.	
(НИУ Московский Энергетический институт)	
Интеллектуальное устройство потребителя. Умный счетчик	
для управления электропотреблением	279
Клинский Д.Д.	
(НИУ Московский Энергетический институт)	
Автоматизированная система отопления с тангенциальным	
вентилятором	287
Расулзода Х.Н., Щедрин В.А.	
(Компания «SINOHYDRO-HYDROCHINA», Республика Таджи-	
кистан, ЧГУ им. И.Н. Ульянова)	
Исследование переходных процессов в обмотке ротора гидро-	
генератора при различных коротких замыканиях	
1	291
Волошин А.А., Рогозинников Е.И., Лукина Ю.К., Михайлов Е.А. (НИУ Московский Энергетический институт)	
Адаптивная система регулирования напряжения на ПС	297

Научное издание

СБОРНИК ДОКЛАДОВ НАУЧНО-ТЕХНИЧЕСКОЙ КОНФЕРЕНЦИИ МОЛОДЫХ СПЕЦИАЛИСТОВ

Публикуется без редактирования

Отв. за выпуск А.А. Наволочный, О.А. Онисова

Согласно Закону № 436-ФЗ от 29 декабря 2010 года данная продукция не подлежит маркировке

Подписано в печать 08.04.2019. Формат $60 \times 84/16$. Бумага офсетная. Печать офсетная. Гарнитура Таймс. Усл. печ. л. 18,02. Тираж 300 экз. Заказ № 464.

Отпечатано в соответствии с представленным оригиналом-макетом в типографии Чувашского университета 428015 Чебоксары, Московский просп., 15